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SUMMARY

A numerical method is developed for modelling the interactions between incompressible viscous fluid and
moving boundaries. The principle of this method is introducing the immersed-boundary concept in the
framework of the lattice Boltzmann method, and improving the accuracy and efficiency of the simulation
by refining the mesh near moving boundaries. Besides elastic boundary with a constitutive law, the method
can also efficiently simulate solid moving-boundary interacting with fluid by employing the direct forcing
technique. The method is validated by the simulations of flow past a circular cylinder, two cylinders
moving with respect to each other and flow around a hovering wing. The versatility of the method is
demonstrated by the numerical studies including elastic filament flapping in the wake of a cylinder and
fish-like bodies swimming in quiescent fluid. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid–structure interaction problems are very important in many bio-fluid systems, such as
cardiovascular flow, fish locomotion and insect flight. To achieve both accuracy and efficiency
in simulating fluid–structure interaction is still a challenge. For numerical methods based on
body-fitted grid, such as arbitrary Lagrangian Eulerian (ALE) method [1–3], the mesh is recon-
structed with the motion of the structure. It has high-order accuracy but is very computationally
expensive. When the boundaries are geometrical irregular or undergoing large deformation, the
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re-meshing procedure will be very difficult. For fixed grid methods, re-meshing is not needed;
only the variables on the Cartesian mesh near the moving boundary are treated so that the effect of
the boundary is considered. These methods are, therefore, more efficient and draw much attention
recently.

The immersed-boundary method developed by Peskin [4, 5], to simulate blood flow in the heart, is
a kind of fixed grid method. In this method, a force density is distributed to the Cartesian mesh in the
vicinity of the moving boundary in order to account for the effect of the boundary. The immersed-
boundary method is originally developed for modelling interaction between incompressible viscous
fluid and elastic boundary, and the force density is calculated from the boundary’s constitutive
law. However, it has been extended to deal with solid body by Goldstein et al. [6] and Saiki and
Biringen [7] by employing a feedback forcing system. The disadvantages of this system are: it
causes spurious oscillations and introduces two free parameters which must be determined by the
flow conditions. Later, Mohd-Yusof [8] and Fadlun et al. [9] proposed the direct forcing method,
which has been proved to be more efficient and can be used at higher Reynolds number flows.
Distributing force density on a narrow region near the boundary is an inherent feature of the
immersed-boundary method. This feature makes it necessary to use fine mesh near the boundary,
especially at higher Reynolds number flows.

Recently, lattice Boltzmann method, a kinetic-based approach for simulating fluid flow, has been
developed extensively and proven to be a robust and alternative method for solving complex fluid
systems [10–13]. The standard lattice Boltzmann method, which employs a uniform Cartesian
mesh, has been combined with immersed-boundary method by Feng and Michaelides [14, 15]
for solving rigid particles flow. However, it is difficult to extend the immersed-boundary lattice
Boltzmann method (IBLBM) to flow problems with high Reynolds number, mainly because high
grid resolution is needed near the solid boundary; as the method employs uniform mesh, the
computational effort would be very large. Filippova and Hänel [16] and Yu et al. [17] have
proposed the multi-block lattice Boltzmann method, in which the computational domain is divided
into blocks: fine mesh covers the blocks in which the gradients are large and coarse mesh is
employed for other blocks. The computational efficiency of lattice Boltzmann method has been
substantially improved by the multi-block strategy.

In the present paper, the immersed-boundary method is employed in the framework of multi-
block lattice Boltzmann method to model the interactions between incompressible viscous fluid
and moving solid or elastic boundaries. For solid boundary immersed in fluid, the direct forcing
scheme has been employed. Fine mesh is used only near the moving boundaries, which makes the
simulation efficient and accurate. Flow past circular cylinder, two cylinders moving with respect
to each other and flow around a hovering wing have been calculated to validate our algorithm. The
simulation of an elastic filament flapping in the wake of a cylinder is carried out to demonstrate the
capability of the method for fluid and elastic-boundary interaction problem. The method has also
been applied to simulate fish-like bodies swimming in fluid as an example of interaction between
complex solid boundaries.

2. NUMERICAL METHOD

2.1. Multi-block lattice Boltzmann method

The lattice Boltzmann method is a kinetic-based approach for simulating fluid flows. It decomposes
the continuous fluid flow into pockets of fluid particles which can only stay at rest or move to one
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Figure 1. D2Q9 lattice model.

of the neighbouring nodes. The D2Q9 model using a square lattice with nine possible velocities
(see Figure 1) is one of the commonly used models in two-dimensional simulation, in which the
discrete lattice Boltzmann equation (LBE) has the form of [18]:

fi (x + ei�t, t + �t) − fi (x, t) = − 1

�
[ fi (x, t) − f eqi (x, t)] (1)

where fi (x, t) is the distribution function for particles with velocity ei at position x and time t ,
�t is the lattice time interval, f eqi (x, t) is the equilibrium distribution function and � is the non-
dimensional relaxation time.

In the D2Q9 model, the fluid particles have the possible discrete velocities stated as follows:

e0 = (0, 0)

ei = (cos[�(i − 1)/2], sin[�(i − 1)/2])c for i = 1–4

ei = √
2(cos[�(i − 9/2)/2], sin[�(i − 9/2)/2])c for i = 5–8

(2)

where c=�x/�t and �x is the lattice spacing.
The equilibrium distribution function f eqi (x, t) is in the form of:

f eqi = Ei (�,u) (3)

with

Ei (�,u) =�i�

[
1 + e · u

c2s
+ uu : (eiei − c2s I)

2c4s

]
(4)

where �i are the weighing factors with the values

�0 = 4/9

�i = 1/9 for i = 1–4

�i = 1/36 for i = 5–8

(5)

and cs = c/
√
3 is the sound speed.
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The relaxation time is related to the kinematic viscosity in Navier–Stokes equation in the form
of

� =
(

� − 1

2

)
c2s�t (6)

Once the particle density distribution is known, the fluid density and momentum are calculated,
using

�=∑
i

fi (7)

�u=∑
i
ei fi (8)

In the present paper, the multi-block lattice Boltzmann method proposed by Yu et al. [17] is
employed. The computational domain is divided into blocks which are connected through the
interface. In each block, the constant lattice spacing equals the lattice time interval. On the
interface between blocks, the exchange of variables follows a certain relation so that the mass and
momentum are conserved and the stress is continuous across the interface.

Consider a two-block system to explain the idea of the multi-block method. The ratio of lattice
space between the two blocks is defined as follows:

m = �xc
�xf

(9)

where �xc and �xf are the lattice space of the coarse- and fine-mesh blocks, respectively. For
a given lattice space, the fluid viscosity can be obtained from Equation (6). In order to keep a
constant viscosity, the relaxation parameter �f in fine mesh and �c in coarse mesh, must satisfy the
following relation:

�f = 1
2 + m(�c − 1

2 ) (10)

The variables and their derivatives on the grid must be continues across the block interface. To
keep this continuity, the relation of the density distribution function in the neighbouring blocks is
proposed as:

f̃ ci = f eq,fi + m
�c − 1

�f − 1
[ f̃ fi − f eq,fi ] (11)

f̃ fi = f eq,ci + �f − 1

m(�c − 1)
[ f̃ ci − f eq,ci ] (12)

where f̃i is the post-collision density distribution function.
The typical structure of interface is illustrated in Figure 2. The fine block boundary, line MN,

is in the interior of the coarse block. The coarse block boundary, line AB, is in the interior of
the fine block. This arrangement is convenient for information exchange. On the boundary of fine
block MN, there is no information on the grid points denoted by the solid symbol • in Figure 2.
It is obtained from spatial interpolation based on the information on the grid nodes denoted by
the open symbol ◦ on the line MN. A symmetric, cubic spline spatial fitting [17] is used to avoid
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Figure 2. Interface structures between two blocks.

spatial asymmetry caused by interpolation

f̃ (x)= ai + bi x + ci x
2 + di x

3, xi−1�x�xi , i = 1, . . . , n (13)

where the constants (ai , bi , ci , di ) are determined by using the continuity conditions of f, f ′, f ′′
and suitable end conditions such as zero second derivatives for f .

Because the fluid particle has the same streaming velocity on each block, the computation
marches m steps on the fine-mesh block for every one step on the coarse-mesh block. On the fine
block MN, temporal interpolation is needed to obtain f̃�(t (n+1)/m,MN). A three-point Lagrangian
formula [17] is used for temporal interpolation,

y(t) =
3∑

k=1
yk

⎛
⎜⎝ ∏

j=1
j �=k

t − ti
tk − t j

⎞
⎟⎠ (14)

2.2. Immersed-boundary method

In the immersed-boundary method of Peskin [4, 5], two different sets of coordinate system are
used. The fluid region is represented by fixed Cartesian grids and the moving boundary immersed
in the fluid is decomposed into a set of Lagrangian points. The Lagrangian points are advected by
the flow field. The fluid–structure interaction is modelled by adding a force term to the right-hand
side of the Navier–Stokes equation which governs the fluid motion.

To explain the immersed-boundary method, we consider a massless elastic filament with
boundary � immersed in the fluid domain � (see Figure 3). The fluid domain � is represented
by Eulerian coordinates x, while the boundary of the filament �, is represented by Lagrangian
coordinates s. Any position on the filament can be written as X(s, t); F(s, t) represents the filament
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T

Figure 3. An elastic boundary immersed in fluid.

force density, which is a combination of internal link force induced by deformation and external
force and f(x, t) represents the fluid body force density.

The non-slip boundary condition is satisfied by letting the flexible structure move at the same
velocity as the fluid around it. That is,

�X(s, t)

�t
= u(X(s, t), t) (15)

This motion will cause the filament to deform. The boundary force density F(s, t) is obtained
from the constitutive law of the filament, and distributed to the fluid mesh points near it by a Dirac
Delta function, written as follows:

f(x, t) =
∫

�
F(s, t)�(x − X(s, t)) ds (16)

where

�(r) =

⎧⎪⎨
⎪⎩

1

4

(
1 + cos

(
�|r |
2

))
, r�2

0, r>2

(17)

in which r is the distance between the Lagrange and Eulerian nodes divided by the Eulerian grid
space. For two-dimensional case, the Dirac Delta function can be written as follows:

�(X − Xi j ) = �(x − xi j )�(y − yi j ) (18)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1727–1754
DOI: 10.1002/fld



SIMULATING FLUID AND MOVING-BOUNDARIES INTERACTIONS 1733

The same Dirac Delta function is used to obtain the velocities of the Lagrangian nodes on
the moving boundary. The mathematical form can be written as follows, which illustrates the
implementation of Equation (15):

�X
�t

=
∫

�
u(x, t)�(x − X(s, t)) dx (19)

The immersed-boundary method is originally developed for modelling interaction between
incompressible viscous fluid and elastic boundary with a constitutive law. However, it has been
extended to solve solid body immersed in fluid by several researchers. The key procedure is how
to generate the force density. Goldstein et al. [6] and Saiki and Biringen [7] proposed a feedback
forcing system. However, it causes spurious oscillations and introduces two free parameters which
must be determined by the flow conditions.

Mohd-Yusof [8] and Fadlun et al. [9] proposed the direct forcing method, which has been
proved to be more efficient and can be used at higher Reynolds number flows. The Navier–Stokes
equation with a force density in discrete form is written as follows:

�

(
un+1
i − uni

�t
+ unj u

n
j,i

)
= −pn,i + �uni, j j + fn+1

i (20)

If the boundary condition at t = tn+1 can be imposed, the force density can be directly obtained
from

fn+1
i = �

(
un+1
i − uni

�t
+ unj u

n
j,i

)
+ pn,i − �uni, j j (21)

Recently, Feng and Michaelides [15] have proposed a new direct forcing scheme, in which at
t = tn+1 the velocity at the Lagrangian point equals the velocity of the solid boundary at the same
point, Un+1

i . Thus, the force density is calculated from

fn+1
i = �

(
Un+1
i − uni

�t
+ unj u

n
j,i

)
+ pn,i − �uni, j j (22)

This scheme is more efficient for moving-boundary problems.

2.3. Hybrid immersed-boundary and multi-block lattice Boltzmann method

In the present paper, the immersed-boundary method is combined with the multi-block lattice
Boltzmann method. In order to solve the flow field with a force density, the LBE must be mod-
ified. Several forms of LBE which can handle a force density have been proposed. Guo et al.’s
approach [19] is more accurate for unsteady flow with force changing with time and space, in
which the modified LBE is in the following form:

fi (x + ei�t, t + �t) − fi (x, t) =−1

�
[ fi (x, t) − f eqi (x, t)] + �t Fi (23)
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where

f eqi = Ei (�,u∗) (24)

with

�u∗ =∑
i
ei fi + 1

2
f�t (25)

Fi =
(
1 − 1

2�

)
�i

[
ei − u
c2s

+ (ei · u)

c4s
ei

]
· f (26)

In the computation, a two-grid system is employed. The lattice space ratio between coarse
and fine grid is equal to 2. The solid or elastic boundaries are immersed in the fine-mesh block.
The present procedure for multi-block computation is very similar to that proposed by Yu et
al. [17]. The only difference exists in the computation on the fine-mesh block. That is a subroutine
implementing the immersed-boundary method is added before the streaming and collision steps.

3. RESULTS AND DISCUSSION

3.1. Flow passing a circular cylinder

The flow past a circular cylinder is a standard benchmark computation for testing many numerical
methods. This case is used to validate our method for solving fluid–solid boundary problem. The
Reynolds number, drag coefficient, lift coefficient and Strouhal number are defined as

Re= �U∞D

�

Cd = Fd
0.5�U 2∞D

Cl = Fl
0.5�U 2∞D

St = f D

U∞

(27)

where � is the fluid density, � is the fluid viscosity, U∞ is the incoming velocity, D is the diameter
of the cylinder, Fd and Fl are the drag and lift forces, and f is the oscillation frequency.

The flow is computed at Reynolds number of 100 and 200 using computational domain of
30 × 20. The diameter of the cylinder is 1 and its centre is located at [10, 10]; � = 1, U∞ = 0.1.
The mesh and block system is illustrated in Figure 4. The fine-mesh block covers the area from
8 to 16 on x-axis and 8 to 12 on y-axis, which is about 5.3% of the whole computational domain by
area. In the fine block, �xf =�yf =�tf = 0.02. The other area is covered by coarse-mesh blocks,
in which �xc = �yc =�tc = 0.04. On the far-field boundary, the density distribution function is
set at its equilibrium state.
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Figure 4. Illustration of mesh and block system on the computational domain. Mesh density is reduced
by a factor of 25 for clarity.
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Figure 5. Evolution of force coefficients: (a) drag; and (b) lift.

In Figures 5(a) and (b) the evolution history of drag and lift coefficients is presented. The
oscillation frequency of drag is twice that of lift. The stream function and pressure contours are
presented in Figures 6(a) and (b), and 7(a) and (b). In Figures 8(a) and (b) the vorticity contour
around the cylinder is presented. The Karman vortex street is observed in the wake. From Figures
6–8, it is clear that the variables at the interface between blocks are continuous.

The drag coefficient, lift coefficient and Strouhal number are compared with that of previous
literatures in Table I. It shows that the present results are within the range of values reported by
previous studies.
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Figure 6. Stream function contour: (a) Re= 100; and (b) Re= 200.

To demonstrate that the results are grid-independent, numerical simulation for several grids with
different sizes were carried out, with the same two-block system. The drag coefficient is used as
an indicator for this study. From the results in Table II, the grid resolution of �xf = �yf = 0.02 is
sufficient to capture the important characteristics.

With a fine-mesh system covering the whole computational domain, which is actually the original
IBLBM, a numerical study is carried out on flow past a cylinder at Re= 100. The drag coefficient,
lift coefficient and Strouhal number are found to be 1.436, 0.343 and 0.166, respectively, which
are nearly the same as that of the present multi-block method. However, only about 5.3% of the
computational area is covered by fine mesh with the present multi-block method. Computational
effort is saved by using less mesh, and furthermore one time step on coarse mesh needs two time
steps in fine-mesh. The computational effort saved is estimated as follows:

1 − (5.3% × 2 + 0(ib)) × 2 + (100% − 5.3%)

(100% × 2 + 0(ib)) × 2
≈ 0.71

where 0(ib) is the computational effort incurred by implementing the immersed-boundary condition,
which is a small value compared with the fluid field computation effort. Conversely, it can be
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Figure 7. Pressure contours: (a) Re= 100; and (b) Re= 200.

expected that under the same computational effort, the present method gives more accurate result
as the near boundary region is covered with fine-mesh.

3.2. Two circular cylinders moving with respect to each other

This example is used to test the present method in simulating solid moving boundaries immersed
in fluid. It has been previously studied by Russell and Wang [21], as well as Xu and Wang [22].
The initial geometry (Figure 9) is the same as theirs, and so is the far-field rigid wall boundary
condition. The fine-mesh block, with bold solid line as the boundary in Figure 9, covers the area
from −3 to 19 on x-axis and −2 to 3.6 on y-axis. The other area is covered with coarse mesh.
The grid resolutions in both blocks are the same as that in Section 3.1. The diameter of both
cylinders is equal to 1, which is also the characteristic length. Each cylinder, oscillates for two
periods about its initial position and then moves with respect to each other at the characteristic
velocity U = 0.025 and Re= 40. Compared with Xu and Wang [22] the same characteristic length
is used, however, the current characteristic velocity is 1

40 of their study; so the time scale is
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Figure 8. Vorticity contours: (a) Re= 100; and (b) Re= 200.

Table I. Comparison with previous studies on flow past a circular cylinder.

Re= 100 Re= 200

Cd Cl St Cd Cl St

Lai and Peskin [20] 1.4473 0.3299 0.165 — — 0.190
Russell and Wang [21] 1.43 0.339 0.175 1.45 0.75 0.202
Xu and Wang [22] 1.423 0.34 0.171 1.42 0.66 0.202
Chew et al. [29] 1.3668 0.375 0.164 — — —
Present 1.438 0.344 0.166 1.449 0.709 0.197

40 times of theirs. The position of the upper cylinder is

xu =

⎧⎪⎨
⎪⎩
16 − 4

�
sin

(
�t

160

)
, 0�t�640

32 − 0.025t, 640�t�1280

yu = 1.5

(28)
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Table II. Drag coefficients for different grid size.

Grid resolution in fine block Re= 100 Re= 200

1
30 1.454 1.459

1
40 1.443 1.451

1
50 1.438 1.449

1
60 1.436 1.448

1
70 1.435 1.448

x

y

U

-U

(0, 0)

(16, 1.5)

(-8, 8)

(-8, -8)

(24, 8)

(24, -8)

Figure 9. Computational geometry for two cylinders moving with respect to each other.

The position of the lower cylinder is

xl =

⎧⎪⎨
⎪⎩

4

�
sin

(
�t

160

)
, 0�t�640

0.025t − 16, 640�t�1280

yl = 0

(29)

A non-equilibrium extrapolation method proposed by Guo et al. [23] has been used to treat the
rigid wall boundary condition in this section as well as Sections 3.3 and 3.5.

Figure 10(a) presents the vorticity contour when the two cylinders are closest to each other, at
t = 960; Figure 10(b) shows the vorticity field at t = 1280, when the cylinders are separated
from each other by a distance of 16. These results qualitatively agree with that of Xu and
Wang [22].
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Figure 10. Vorticity fields around two cylinders moving with respect to each other: (a) cylinders are closest
to each other; and (b) cylinders are separated by a distance of 16.

The developing history of the drag and lift coefficients of the upper cylinder is shown in
Figures 11(a) and (b), using the same time scale as Xu and Wang [22]. Very good quantitative
agreement is observed. From the results it is seen that the drag force increases when the two
cylinders are approaching each other, which means they are repulsive. However, they are attracting
each other when they move away in close proximity, because the drag force decreases.

This case is further studied with the original IBLBM, which employs uniform mesh for the
whole computational domain. The grid resolution (IBLBM) is the same as that of the fine block in
this section. The temporal evolution of drag and lift coefficients is shown in Figures 11(a) and (b).
It is seen that they are nearly the same as the results by the present multi-block method. However,
only 24.1% of the computational domain is covered by fine mesh in the current method; thus,
computational effort is saved, though not as much as that of Section 3.1.

3.3. Flow around a hovering wing

A rigid wing undergoing both translational and rotational motion within a rigid box is studied as
a more stringent case to validate the present method. The wing has an elliptical shape with chord
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Figure 11. Temporal evolution of: (a) lift; and (b) drag coefficients for the upper cylinder in flow around
two cylinders moving with respect to each other.

length c and aspect ratio e. Its positions in one period are shown in Figure 12. Mathematically, it
is governed by

A(t) = 0.5A0

(
1 + cos

2�t

T

)

�(t) = �0

(
1 − sin

(
2�t

T
− 	

)) (30)

where A(t) is the displacement of the wing centre with amplitude A0, �(t) is the angle of
attack with amplitude 2�0, T is the flapping period and 	 is the phase difference. The incli-
nation angle of the stroke plane is 
 (Figure 12). In the present study, the parameters are:
c= 1, e= 4, A0 = 2.5, �0 = �/4, T = 50�, 	 = 0 and 
 = �/3. The characteristic length is c, the
velocity scale is �A0/T and the Reynolds number is �A0c/T �, which is equal to 157. This
example has been previously studied by Xu and Wang [22]; the only difference is that the
present characteristic velocity is 1

20 of theirs, and thus the present time scale is 20 times
of theirs.
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Figure 12. Positions of a hovering wing in one period. The solid ellipses represent the downstroke phase
and the dotted ellipses represent the upstroke phase.

The present rigid box ranges from −10 to 6 on both x-axis and y-axis, which is also the
computational domain. The fine-mesh system covers the area from 8 to 13 on x-axis and 8 to
14 on y-axis. The other area is covered with coarse mesh. The grid resolutions in fine block are
�xf =�yf =�tf = 1

64 , and �xc =�yc =�tc = 1
32 in coarse block. Further refinement of the mesh

gives nearly the same results.
Figure 13 presents four images of the vorticity field near the wing within one period. A pair of

vortex with different modes are created and shed from the leading and trailing edges of the wing.
The vorticity results are very similar to Xu and Wang [22], and its physical meaning was given in
detail by Wang [24].

The temporal evolution of the drag and lift coefficients of the hovering wing is plotted in Figures
14(a) and (b), using the same time scale as Xu and Wang [22]. Reasonable quantitative agreement
is observed.

3.4. Filament flapping in the wake of a cylinder

The flapping motion of an elastic filament in the wake of a circular cylinder is studied at the
Reynolds number of 100. This case demonstrates the ability of the present method in dealing with
interaction between fluid and elastic-boundary with a prescribed constitutive law. The computational
domain, far-field boundary condition, location and diameter of the cylinder, fluid density, incoming
flow velocity, grid resolutions in fine block and coarse block are all similar to that of Section 3.1.
However, the fine-mesh block covers the area from 8 to 21 on x-axis and 8 to 12 on y-axis, which
is about 8.7% of the whole computational domain.
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Figure 13. Vorticity fields around a hovering wing at four different instants in a period: (a) t = 0.25 T ;
t = 0.44 T ; (c) t = 0.74 T ; and (d) t = 0.99 T .

The constitutive law of the filament is Hook’s law, described as follows:

� = K

(
�X
�s

− 1

)
(31)

The bending effect of the filament is also considered, with the bending energy Eb defined as

Eb = 1

2
Kb

∫ ∣∣∣∣∣�
2X(s, t)

�s2

∣∣∣∣∣
2

ds (32)
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Figure 14. Temporal evolution of: (a) drag; and (b) lift coefficients for flow
around a hovering wing at Re= 157.
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Figure 15. Filament trajectories in one period.
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Figure 16. Vorticity contours at different times which are shown in Figure 17.

In the above two equations, � is filament tension, K is the stretching coefficient which is defined
as the ratio between stress and strain. After being scaled by �U0, the coefficient K takes the value
of 5. The coefficient Kb is bending rigidity, defined as the ratio between bending moment and
curvature. After being normalized by �U0D2 (D is cylinder diameter), it is equal to 5 × 10−4.
These coefficient values are chosen so that the filament length is nearly unchanged; however, the
values are not too large to make the computation unstable.

The filament has an initial length of 2.5, and is initially located on the centreline of the
computational domain, aligned with the x-axis. Only the left end of the filament is fixed at
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Figure 17. Time sequence of the results shown in Figure 16.

[13, 10] and the other end moves freely with the flow. Shi and Phan-Thien [25] have numerically
studied an elastic beam flapping in the wake of a cylinder. In the present study, parameters such
as filament length and position are chosen similar to them of the beam in Shi’s study.

The results (Figure 15) show that due to the vortex shedding alternately from the upper and
lower surfaces of the cylinder, the filament swings periodically in the wake of the cylinder; a
sequence of the filament trajectory in one period of swinging is shown. It is interesting that the
free end of the filament forms a trajectory with a figure of ‘8’ shape. Similar trajectory shape has
been observed by Zhang et al. [26] in their experimental study of an elastic filament flapping on
a soap film and in Shi’s numerical study [25]. A series of vorticity contour during one period is
shown in Figure 16, with the time sequence given in Figure 17. It is seen that due to the existence
of an elastic filament, the wake flow field has been substantially changed. There are also vortexes
shedding from the free tip of the filament. When compared with the vorticity contour without a
filament at Re= 100 (Figure 8(a)), the shape of Karman vortex street after the cylinder has changed
noticeably. The vortices become elongated and the lateral spacing between vortexes is wider.

In order to study the effects of the filament on the characteristics of flow quantitatively,
Table III compares the drag coefficient, lift coefficient of the cylinder and the Strouhal number
with and without the elastic filament. The results show that due to the flapping motion of the
filament, the drag force of the cylinder is decreased. This is because the filament hampers
the wake flow. Thus, the pressure is increased in the region between cylinder and filament;
and the oscillation of the flow system is slower than that of a single cylinder. From our results
(Table III) it is seen that the amplitude of the lift force is increased. To explain its reason, the flow
fields nearby the cylinder were studied at the moment when the maximum lift coefficients appear
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Table III. Comparison of flow characteristics for flow past a circular cylinder with and
without a downstream filament.

Cd Cl St

Cylinder without filament 1.438 0.344 0.166
Cylinder with filament 1.406 0.396 0.156
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Figure 18. Pressure coefficients along the cylinder surface when the maximum lift coefficients appear.

(0.344 for a single cylinder; 0.396 for a cylinder with a filament). The pressure coefficient, which
is defined as Cp = 0.5(p − p∞)/(�U 2∞), are plotted along the cylinder surface (	 = 0 to 2�) in
Figure 18. As expected, the existence of the filament increases the pressure in the downstream face
of the cylinder, especially the region where 	 is between � and 1.5�. It increases the asymmetry
of pressure distribution, and therefore increases the lift force. However, as the filament is very
flexible, its effect on the upstream cylinder is not large. The changes on these coefficients are
about a few percents. Similar trends have also been reported by Shi and Phan-Thien [25].

3.5. Fish-like bodies swimming in fluid

In order to demonstrate the applicability of the method for modelling flexible and complex bound-
aries moving in incompressible viscous flow, a simulation is made of fish-like bodies swimming
in fluid. Two cases are studied: (1) a single fish-like body swimming in fluid at Re= 400; (2) two
fish-like bodies swimming with respect to each other at Re= 800.

The configuration of the fish is approximated by the cross-section of a NACA 0012 airfoil.
The fish-like body of length L is moving in a straight line with constant axial velocity U and
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Figure 19. Flwo contours for fish-like body moving in fluid at Re= 400, St= 0.573 and t = 140:
(a) stream function; (b) pressure; and (c) voriticity.

undulating in the lateral direction with a prescribed mode. The approach of Gilmanov’s [27] is
adopted to mimic this undulating motion, in which the lateral displacement of the fish body is
described in terms of a travelling wave

y(x, t) = a(x) sin(kx − �t), x ∈ [0, 1] (33)

where k is the wave number and � is the circular frequency of oscillation; and a(x) is the amplitude
of the wave, in the form of

a(x)= a0 + a1x + a2x
2 (34)

The constants are chosen as a0 = 0.04, a1 =−0.16, a2 = 0.32, so that a(x) achieves a maximum
value of 0.2 at the tail.
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Figure 20. Evolution of the drag and lift coefficients for the fish-like body.
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Figure 21. Force coefficients at different circular frequencies: (a) mean drag;
and (b) root mean square of lift.

Two important dimensionless numbers are the Reynolds number, defined as Re=UL/�, and
the Strouhal number, defined as St= 2amax f/U ; where f is the undulating frequency and is equal
to �/2�, 2amax is the maximum excursion of the tail. In the current study, the parameters are:
L = 1,U = 0.05,Re= 400, wave number k = 2�, and �= 0.15, 0.30, 0.45, 0.60, 0.75, with the
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Figure 22. Geometry of two fish-like bodies swimming with respect to each other, with illustration of
mesh around the upper fish-like body.

corresponding Strouhal numbers 0.191, 0.382, 0.573, 0.764, 0.955. The computational domain is
[16× 8] with rigid wall boundary condition; the fine-mesh block covers the area from 2 to 14 on
x-axis and 3 to 5 on y-axis, about 18.8% of the whole computational domain by area. In the fine
block, �xf =�yf =�tf = 0.01. The remaining area is covered by coarse-mesh blocks, in which
�xc = �yc = �tc = 0.02. In all the cases, the fish-like bodies move within the fine-mesh block.

The simulation of a single fish-like body swimming in a quiescent fluid is presented in
Figures 19(a)–(c); the results show the contours of the stream function, pressure and vorticity
around the body at St = 0.573 and t = 140. It is seen that due to the axial and lateral motion
of the fish-like body, there are streamlines starting from and ending at the body surface. Vor-
tices with opposite signs are shed periodically from the tail of the fish-like body. A vortex array,
very similar to the Von Karman vortex street, is formed in the wake of the moving body. Also
studied are the drag and lift coefficients of the fish-like body, whose evolution history are shown
in Figure 20. These coefficients are defined in Equation (27), in which the length of the body is
chosen as the characteristic length. The result shows that with periodical vortex shedding, both
drag and lift coefficients vary periodically. The oscillation frequency of drag is twice that of lift.
This trend is similar to that of flow past circular cylinder in Section 3.1.

Also investigated is the effect of the undulating frequency of the fish-like body on the drag and
lift coefficients. The motion under different frequencies, �= 0.15–0.75, with the corresponding
Strouhal numbers 0.191–0.955, has been studied. Figures 21(a) and (b) show the mean drag
coefficient and the root mean square of lift coefficient at these frequencies. The result shows that
the mean drag applied on the fish-like body decreases with the increase in undulating frequency.
When the circular frequency � is approximately greater than 0.6, the mean drag becomes negative
which means that it acts as a thrust force. From Figure 20(b) it is seen that with the increase in
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Figure 23. Flow contours for two fish-like bodies moving in fluid at t = 100: (a) stream
function; (b) pressure; and (c) vorticity.

undulating frequency, the amplitude of the lift increases monotonically. Similar phenomenon has
been reported in Dong’s study on flow past a fish-like plate with a travelling wave [28].

A simulation was also made of two fish-like bodies swimming with respect to each other. The
initial geometry and mesh around the upper fish-like body is illustrated in Figure 22, in which the
small rectangular box is the boundary of the fine-mesh block. The fish-like bodies are moving at
opposite modes. Figures 23(a)–(c) present the stream function, pressure and vorticity contours at
t = 100 when the distance between the two bodies is smallest. Figures 24(a)–(c) show the stream
function, pressure and vorticity fields when they are further apart, at time t = 140. The results show
that the vortices shed from the tails of the fish-like bodies and interact with each other, making the
flow field very complex. Figure 25 shows the evolution history of the drag and lift coefficients of
the upper body. Compared with Figure 19 for a single fish-like body, it is found that the temporal
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Figure 24. Flow contours for two fish-like bodies mocing in fluid at t = 140: (a) stream
function; (b) pressure; and (c) vorticity.

evolution of the drag and lift coefficients has changed significantly when these two fish-like bodies
are close to each other.

4. CONCLUSIONS

A hybrid immersed-boundary and multi-block lattice Boltzmann method is presented to simulate
moving boundaries interacting with incompressible viscous fluid. The present method preserves
the advantages of the immersed-boundary method and lattice Boltzmann method; and at the same
time improves their accuracy and efficiency by employing a multi-block strategy. Besides dealing
with elastic boundaries interacting with fluid, the method can also efficiently simulate solid moving
boundaries; this is achieved by employing the direct forcing technique. Three benchmark compu-
tations were carried out to validate the present method: flow past a circular cylinder, two cylinders
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Figure 25. Evolution of the drag and lift coefficients of the upper fish-like body.

moving with respect to each other, and flow around a hovering wing. Numerical simulations were
conducted on an elastic filament flapping in the wake of a cylinder and fish-like bodies swimming
in quiescent fluid. The results demonstrate the versatility of the present numerical model and show
it as an alternative approach for the simulation of fluid–structure interactions.
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